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The correlation between the pancreatic and external abdominal motion due to 
respiration was investigated on two patients. These studies utilized four dimen-
sional computer tomography (4D CT), a four dimensional (4D) electromagnetic 
transponder system, and a gating belt system. One 4D CT study was performed 
during simulation to quantify the pancreatic motion using computer tomography 
images at eight breathing phases. The motion under free breathing and breath-hold 
were analyzed for the 4D electromagnetic transponder system and the gating belt 
system during treatment. A linear curve was fitted for all data sets and correlation 
factors were evaluated between the 4D electromagnetic transponder system and 
the gating belt system data. The 4D CT study demonstrated a modest correlation 
between the external marker and the pancreatic motion with R-square values 
larger than 0.8 for the inferior–superior (inf-sup). Then, the relative pressure from 
the belt gating system correlated well with the 4D electromagnetic transponder 
system’s motion in the anterior–posterior (ant-post) and the inf–post directions. 
These directions have a correlation value of -0.93 and 0.76, while the lateral only 
had a 0.03 correlation coefficient. Based on our limited study, external surrogates 
can be used as predictors of the pancreatic motion in the inf–sup and the ant–post 
directions. Although there is a low correlation on the lateral direction, its motion 
is significantly shorter. In conclusion, an appropriate treatment delivery can be 
used for pancreatic cancer when an internal tracking system, such as the 4D elec-
tromagnetic transponder system, is unavailable.
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I.	 Introduction

Pancreatic cancer is one of the most deadly cancers, with a 1% five-year overall survival.(1,2)  
At the time of diagnosis, around 60% of the patients have locally advanced disease and/or distant 
metastasis.(3-5) Even when patients have metastatic disease, a significant percentage will die of local 
complications, according to a John Hopkins Rapid Autopsy Program in Pancreatic Cancer. 

External beam radiotherapy (EBRT) may be delivered as a radical or palliative treatment for 
pancreatic cancer. In order for radiotherapy to be successful, the entire tumor volume must be 
irradiated to high doses. However, this can pose some challenges due to tumor motion and radia-
tion tolerance of organs at risk. As treatment delivery techniques such as intensity-modulated 
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radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), stereotactic body 
radiation therapy (SBRT) advance, knowledge of target position become more crucial.(6-10)  
For example, tumor motion may result in a different dose distribution if motion is not correctly 
accounted for. Several techniques have been utilized to improve the localization and precise 
delivery of the treatment. Langen and Jones(11) and others(12-17) have reviewed techniques to 
manage interfraction and intrafraction motion. In particular, Langen and Jones reviewed the 
literature for pancreatic motion and concluded that the pancreas can move up to 3.0 cm during 
normal breathing and up to 8.0 cm in deep breathing. Covering such motion with wide margins 
would be inappropriate, since a large volume of healthy organs, such as bowel and kidneys, might 
receive therapeutic doses.(6) Hence, it is important to understand how the pancreas moves.

Ozhasoglu and Murphy(18) have described several approaches to optimize treatment delivery 
when the target is affected by breathing motion. One approach is to use breath-hold or to modify 
the breath cycle.(19-23) Other methods include synchronizing the radiation beam on time to the 
breathing cycle to deliver the dose when the target moved the least,(24-28)  and allowing the patient 
to breathe normally and track the tumor position during treatment.(29-31) Also, the motion of an 
external marker is often used as a reference to deduce the internal motion of the tumor.(32-34)  
Consequently, evaluating the correlation between an external marker on the surface of the 
body and the pancreatic motion is crucial for understanding and evaluating treatment delivery. 
Previous studies have investigated the correlation between abdominal motion and external 
markers using 2D techniques.(31,35-38) This study aims to investigate the correlation between 
the external abdominal motion and the internal pancreatic tumor motion. First, the correlation 
was found between the position of an external marker placed at the abdomen region and three 
transducers inside the pancreatic tumor using 4D CT. Then, another correlation between the 
information given by a gating belt system and location of three 4D electromagnetic transpon-
ders was evaluated.

 
II.	 Materials and Methods

For this study, two patients (A and B) with pancreatic cancer were enrolled on an IRB-approved 
prospective protocol. Electromagnetic transponders were surgically implanted around the 
patient’s pancreatic tumor, as previously described.(39-41) Only one 4D CT was acquired for 
each patient. Each 4D CT was reconstructed to eight 3D CTs according to different phases. The 
spatial resolution was set to 0.1 cm (lateral), 0.1 cm (ant–post) and 0.3 cm (inf–sup) directions. 
The patients were treated using a 3D conformal technique planned using the Eclipse version 8.6 
(Varian Medical Systems, Palo Alto, CA). Patients were monitored with the gating belt system 
and the 4D electromagnetic transponder system for 20 fractions and for at least 5 minutes in 
each fraction, 2.5 minutes before treatment and 2.5 minutes during treatment.

A. 	 Correlation using 4D CT
The Real-time Position Management (RPM) Respiratory Gating System (Varian Medical 
Systems) was utilized for the 4D CT studies. In the RPM system, a block has two circular 
reflective markers which reflect infrared light emitted from a set of infrared sources mounted 
in a ring around the camera lens. This infrared light is detected by the camera lens and is sent 
to the RPM respiratory gating system. Using this information, a 4D CT study was performed 
on each patient yielding a CT image dataset in eight phases. The location of one of the circu-
lar reflective markers was recorded and compared to the 3D center location of the three 4D 
electromagnetic transducers acquired from the CT datasets. A linear curve was fitted in each 
direction and its R-squared values were calculated.
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B.	� Correlation using a 4D electromagnetic transponder system and  
a gating belt system

The gating belt system uses mechanical pressure on a pressure-sensitive device imbedded in the 
belt to detect the external respiratory motion (pressure change) in real time.(12) The 4D electro-
magnetic transponder system, on the other hand, yields the 3D coordinates of each individual 
transducer and the center of the three-transducer ensemble.(42-44) The implanted transducers in 
patients are easily localized using a 4D electromagnetic array, as described by Balter.(13) Briefly, 
the 4D electromagnetic array excites the transducers and receives their signal. The location of 
the receiver with respect to the room is acquired by infrared sensors located in the room. At 
the time of treatment, patients were positioned using the 4D electromagnetic transducer local-
ization and tracking system. The gating belt was placed on the umbilical area of each patient. 
Both the relative gating belt system motion due to the respiratory cycle and the internal motion 
of the transducers were recorded using the software for each system. Data were acquired for 
around 2.5 minutes before treatment. Then, both patients were asked to take three big breaths 
and hold it voluntarily for each field delivery. The breath holds were done at inhale and with 
patient’s comfort. Each breath hold lasted for about 30 sec. Using the information yielded by 
these systems, the correlation between the relative amplitude from the gating belt system and 
the 3D motion of the 4D electromagnetic transducers was analyzed. Each analysis was done 
on free-breathing and breath-hold datasets.

 
III.	Res ults 

A. 	 Correlation using 4D CT
The 4D CT studies for both patients indicated that breathing affects pancreatic motion mainly 
in two directions, inf–sup and ant–post. These results compared favorably to those from Mori 
et al.(45) Figure 1(a) illustrates eight different phases of the breathing cycle for Patient A. In this 
figure, the right transponder, marked by a yellow arrow, moved mainly in the inf–sup direction, 
with a smaller displacement along the ant–post direction. Figure 1(b) illustrates the location of 
all three transponders for both patients during a breathing cycle, as well as the center of mass 
of the transponders characterized by asterisks. In this case, the maximum displacements were 
0.90 cm, 0.14 cm, and 0.07 cm in the inf–sup, ant–post, and lateral directions for Patient A, 
respectively. For Patient B, they were 0.95 cm, 0.28 cm, and 0.09 cm, respectively. The external 
marker’s displacement was 0.93 cm and 0.92 cm for Patient A and for Patient B, respectively. 
Figure 2 illustrates absolute position of the 4D electromagnetic transponders for eight phases 
of the breathing cycle. Its position was given as a function of the external marker position from 
4D CT studies for both patients, namely Patient A (left) and Patient B (right). For Patient A, 
the peak-to-peak amplitudes were 0.15 cm, 0.07 cm, and 0.90 cm in the ant–post, lateral, and 
inf–sup directions, respectively. The linear fits had R-squared values of 0.60 (ant-post), 0.23 
(lateral), and 0.88 (inf–sup). The lowest R-square value was in the lateral direction. However, 
the movement was the lowest in this axis, with amplitude of 0.07 cm. The highest R-square 
values resulted from the inf–sup direction, which had the highest range of ± 0.90 cm according 
to 4D CT. Patient B demonstrated similar results. The peak-to-peak amplitudes varied from 
0.28 cm, 0.08 cm, and 0.95 cm in the ant–post, lateral, and inf–sup directions, respectively. The 
corresponding linear fits had R-square values of 0.84 (A–P), 0.45 (lateral), and 0.81 (I–S). 
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Fig. 1. 4D CT sagittal images (a) for Patient A illustrating the right transducer location through eight phases of breathing 
cycle. 3D plot (b) illustrating the location of the three transducers for Patient A and Patient B. The triangles, squares, 
circles, and asterisks represent the right, left, apex, and center of mass transducers, respectively. 

(a)

(b)
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B. 	� Correlation using a 4D electromagnetic transducer system and a gating belt 
system: free breathing

Figure 3 illustrates the 4D electromagnetic transducer motion for Patient A during 120 sec for four 
sessions. Clearly, the pancreatic motion was not cyclic and appeared to be irregular. Although 
the displacement was concentrated within a small region, the center of motion changed from day 
to day, as seen from Fig. 3 where the center of motion was concentrated at different locations. 
The significance of the motion path location within the cube is that the 4D electromagnetic 
transducers have a cyclic motion but also an unpredictable displacement. 

In Fig. 4, one case of the relationship between the 4D transponder system and gating belt 
system motions is illustrated for Patient A. In this figure, the 4D electromagnetic transducer in 
lateral (top), inf–sup (middle), and ant–post locations for 120 sec (solid line) and the abdominal 
pressure as given by the gating belt system (dashed line) were plotted as a function of time. 
The plots were normalized to the mean value better appreciate their correlation. Clearly, the 
ant–post and the inf–sup motion of the 4D electromagnetic transducer completely overlapped 
with gating belt pressure. On the other hand, the lateral motion of the 4D electromagnetic 

Fig. 2. Pancreatic positions in three dimensions as a function of ant–post external marker position from 4D CT studies for 
Patient A (a) and Patient B (b). The linear least squares fits for the points are also illustrated for each direction.

(a)

(b)



18    Betancourt et al.: Abdominal and pancreatic motion correlation	 18

Journal of Applied Clinical Medical Physics, Vol. 14, No. 3, 2013

transducer illustrated here was one of the ones that best correlated with the abdominal pressure. 
All other cases demonstrated a lower correlation. In Fig. 5, a linear fit between these motions are 
illustrated. This figure illustrates the free-breathing motion. In this case, the gating belt system 
data were normalized to unity since it was not calibrated to yield an exact displacement. In this 
example, all 4D electromagnetic transponder system data points had a linear relationship with 
the normalized gating belt system points. For instance, the lateral movement had a slope value 
of 0.4 with a Y-intercept of 0.62 cm. This linear relationship translates to a pancreatic position 

Fig. 3. 3D pancreatic motion for Patient A as give by the 4D electromagnetic transducer system for four sessions. Each 
image illustrates the 3D motion of the center of mass of the three transducers for 120 sec in free-breathing motion.

Fig. 4. For Patient A, the pancreatic lateral (top), inf–sup (middle), and ant–post (bottom) motions for 120 sec as given 
by 4D electromagnetic transducer system (solid line), and the abdominal ant–post motion as given by gating belt system 
(broken line). The curves were plotted using their relative magnitudes to better appreciate their correlation. 
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at 0.82 cm, with a total translational motion of ± 0.20 cm in the coordinate system defined 
during the CT simulation. Even though this motion was small, the pancreas had an even smaller 
displacement range, with a given location of -0.26 cm with a range of ± 0.12 cm for the ant–
post direction. However, the largest displacement was along the inf–sup direction with a slope 
of -1.42 cm and a Y-intercept of 0.40 cm. In this case, the longitudinal location of the pancreas 
can be given by -0.31 cm with a large range of ± 0.71 cm. The negative sign indicated a 180° 
phase shift between the internal motion and the gating belt system data. During the course of 
the treatment, 20 sessions were observed and evaluated. The slope was calculated for each 
direction: lateral, inf–sup, and ant–post. The mean slope value and its standard deviation were 
(0.03 cm, 0.21 cm), (-1.12 cm, 0.13 cm), and (0.33 cm, 0.12 cm) for the lateral, inf–sup, and 
ant–post directions, respectively. The lowest standard deviations were those for the inf–sup and 
ant–post directions that were about one half of the standard deviation for the lateral direction. 
Also, the correlation coefficient was highest for the inf–sup direction, with an average of -0.93. 
This direction also had the lowest standard deviation of 0.04. The ant–post motion also had a 
relatively modest correlation coefficient of 0.76, with a standard deviation of 0.09. Finally, the 
lateral motion had the lowest correlation of the three directions, ranging from 0.87 to -0.70, 
with a mean value of 0.03 and a standard deviation of 0.42. This indicates that the motion in 
the lateral direction is poorly correlated with the external surrogate during respiration. 

C. 	� Correlation between 4D electromagnetic transducer system and gating belt 
system: multiple breath holds 

Figure 6 illustrates the motion of the 4D electromagnetic transducer for Patient A (right) and 
Patient B (left) for a 270 and 290 sec periods, respectively. These measurements were taken 
with intermittent breath-hold periods to evaluate the effect of breath holding. The transducer’s 
lateral (top), inf–sup (middle), and ant–post motions are given by the solid line, and the relative 
pressure of the gating belt system by the dashed line. Patient A clearly demonstrated a strong 
correlation between the 4D electromagnetic transponder system and the gating belt system 
data, as illustrated by the overlapping structures. However, the 4D electromagnetic transponder 
system and the gating belt system disagreed between the relative magnitudes during breath hold, 

Fig. 5. Pancreatic positions in 3D given by 4D electromagnetic transducer system vs. external abdominal ant–post posi-
tion given by gating belt system during free-breathing motion. A linear curve was fitted in each direction: lateral (circle), 
inf–sup (square), and ant–post (asterisk). 
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especially in the lateral dimension where the 4D electromagnetic transponder system yielded 
a lower magnitude than gating belt system. In Patient B, the 4D electromagnetic transponder 
system yielded a higher relative magnitude than gating belt system. Figure 7 illustrates a linear 
fit between the 4D electromagnetic transponder system and the gating belt system for both 
patients with intermittent breath-hold motion. As seen in the free-breathing motion, all 4D elec-
tromagnetic transponder system data points also have a linear relationship with the normalized 
gating belt system points. A key difference from the free-breathing motion data was that there 
was a major displacement increase along all directions, especially in the sup–inf motion. For 

Fig. 6. Pancreatic motion for Patient A (a) and Patient B (b) for a 270 and 290 sec period, respectively. These were taken 
with intermittent breath-hold periods. The pancreatic lateral (top), inf–sup (middle), and ant–post (bottom) motions as 
given by Calypso (solid line), and the abdominal ant–post motion as given by the gating belt system (broken line). The 
curves were plotted using their relative magnitudes.

(a)

(b)
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example, the longitudinal motion had a slope value of -3.9 cm with a Y-intercept of 1.0 cm. 
This linear relationship translated to a pancreatic position at -2.9 cm with a range of ± 1.9 cm. 
Transitioning between breath hold and breathing (catching breath) could have caused a change 
in breathing pattern that affected the linear fit differently in each session. 

Although the transducer’s motion also increased in the other two dimensions, its displace-
ment was lower than 1.0 cm. Another noteworthy characteristic in these plots was that the 4D 
electromagnetic transponder system’s points for gating belt system values of less than ~ 0.5 
follow the linear pattern for the fitting curve quite tightly, whereas the 4D electromagnetic tran-
sponder system points for gating belt system values greater than ~ 0.5 showed a wider spread. 

Fig. 7. Pancreatic position in 3D given by Calypso vs. external abdominal ant–post position given by the gating belt system 
during an intermittent breath-hold motion for Patient A (a) and Patient B (b). The gating belt system data were normalized 
to unity. A linear curve was fitted in each direction: lateral (square), inf–sup (circle), and ant–post (asterisk). 

(a)

(b)
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The slopes of the linear fitted curves for all sessions for Patient A and for Patient B were also 
calculated for each direction (lateral, inf–sup, and ant–post). For Patient A, the mean slope value 
and its standard deviation are (0.3 cm, 0.52 cm), (-2.66 cm, 0.72 cm), and (0.48 cm, 0.22 cm) 
for the lateral, inf–sup, and ant–post directions, respectively. In this case, ant–post yielded the 
lowest standard deviation, with the inf–sup direction having the highest of all three. Patient B 
had similar results; the mean slope value and its standard deviation were (0.05 cm, 0.23 cm), 
(-2.08 cm, 0.54 cm), and (0.64 cm, 0.12 cm) for the lateral, inf–sup, and ant–post directions, 
respectively. The correlation coefficients were the highest for the inf–sup motion, with an average 
of -0.95 for Patient A and -0.78 for Patient B. Although for Patient A this motion still had the 
lowest spread as demonstrated by the lowest standard deviation of 0.09, it had a larger spread 
for Patient B with a standard deviation of 0.14. Similarly, the ant–post and the lateral motions 
yielded a lower correlation coefficient of 0.65 and 0.20 for Patient A, and 0.72 and 0.11 for 
Patient B, respectively, with larger standard deviation values in all four cases. 

 
IV.	 DISCUSSION

Many techniques have been used to minimize the effect of motion on dose delivery such as 
image-guided radiation therapy, beam gating, breath hold or any combination of these. However, 
an important parameter for the utilization of these techniques is the target motion during treat-
ment. Frequently, large margins are utilized to guarantee exposing the target to therapeutic 
radiation doses. However, increasing the margins increases toxicity. Therefore, it is important 
to understand and possibly predict how the target is moving. In this study, pancreatic motion 
was evaluated using two methods, namely a 4D CT study and a 4D electromagnetic system 
combined with a gating belt system.

The first method involved 4D CT in which an external marker and eight CT images recon-
structed at different breathing cycles were used. Inherently, this technique provided a low tem-
poral resolution tool to investigate pancreatic motion and is prone to 4D CT imaging artifacts 
related to breathing irregularities. Furthermore, although the 4D CT images were reconstructed 
in specific breathing cycles, these images only provided the average displacement of the pancreas 
at specific respiratory phases, and the pancreas does not follow a periodic displacement. In 
fact, the pancreas had a very irregular movement. Also, the use of 4D CT only gives informa-
tion at a single time point and there may be motion changes throughout the treatment course. 
Consequently, 4D electromagnetic transducer system was an essential tool to characterize the 
pancreatic motion with a high temporal resolution of about 0.1 sec. 

The second method to correlate pancreatic with abdominal motions involved using the 4D 
electromagnetic transducer system and the gating belt system, both of which have higher spatial 
and temporal resolution. The 4D electromagnetic transducer allowed for full characterization of 
the pancreatic motion. From these data, it was confirmed that displacement is not cyclic and its 
center was displaced from day to day. With the 4D electromagnetic transducer system and gating 
belt system, it was possible to fully correlate the external abdominal and pancreatic motions. 
This was true especially for free-breathing motion. Due to this correlation, it was possible to 
estimate the pancreatic motion given the external abdominal motion by a linear curve. 

When breath-hold techniques were utilized for this study, it was noticed that the proportional-
ity constants for all three dimensions increased, especially for the inf–sup direction, that went 
from -1.1 cm to -2.7 cm — a total increase of 137%. This agreed with the assertion by Langen 
and colleagues(11)  that pancreatic motion can increase from 3.0 cm during normal breathing to 
up to 8.0 cm in deep breathing. While the correlation factors showed a minor increase from -0.93 
to -0.95, the standard deviation of the slopes increased from 0.13 cm to 0.72 cm. The reason 
for an increased pancreatic displacement during breath holding was that patients inhaled or 
exhaled allowing the pancreas to move longer distances for short periods of time. Furthermore, 
the inhale/exhale is not reproducible.    
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In a treatment, patient was instructed for three types of breathing: a free breathing, a deep 
inhalation before breath hold, and a breath hold after inhalation while breathing normally. 
For patient treated with either type of breath hold, the residual motion during breath hold, the 
reproducibility of motion between different breath holds, and the correlation of internal–external 
motion within breath hold are most important. In this study, it was noticed that for most cases, 
the residual motion during the breath hold was within 0.10 cm for the lateral motion, within 
0.20 cm for the ant–post motion, and within 0.30 cm for the inf–sup motion. However, the repro-
ducibility of the motion between different breath holds was less certain. For example, within 
the same treatment day, the 4D electromagnetic transducers often displayed different motions, 
namely on one breath hold the transducer could be slightly moving upward by 0.30 cm while 
in the subsequent two breath holds, they stayed within 0.05 cm. Finally, since the position of 
the 4D transducers varied between breath holds, their correlation was small.      

 
V.	 Conclusions

In this investigation, a pilot study was undertaken to investigate the correlation of external 
marker with pancreatic motion using 4D CT, 4D electromagnetic transducer system, and a gat-
ing belt system. 4D CT yielded a very strong correlation between the three 4D electromagnetic 
transducers and the circular reflective marker in spite of its low temporal resolution. On the other 
hand, based on the very limited number of patients, there appears to be a reasonable correlation 
between the pancreatic movement (the three 4D electromagnetic transducers) and the external 
surrogate (pressure belt in this case). This means that the pancreatic treatments can be gated 
based on the surrogate motion for places when the use of internal markers is not feasible.   
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